Solving Quadratic Multicommodity Problems through an Interior-Point Algorithm
نویسنده
چکیده
Standard interior-point algorithms usually show a poor performance when applied to multicommodity network flows problems. A recent specialized interior-point algorithm for linear multicommodity network flows overcame this drawback, and was able to efficiently solve large and difficult instances. In this work we perform a computational evaluation of an extension of that specialized algorithm for multicommodity problems with convex and separable quadratic objective functions. As in the linear case, the specialized method for convex separable quadratic problems is based on the solution of the positive definite system that appears at each interior-point iteration through a scheme that combines direct (Cholesky) and iterative (preconditioned conjugate gradient) solvers. The preconditioner considered for linear problems, which was instrumental in the performance of the method, has shown to be even more efficient for quadratic problems. The specialized interior-point algorithm is compared with the general barrier solver of CPLEX 6.5, and with the specialized codes PPRN and ACCPM, using a set of convex separable quadratic multicommodity instances of up to 500000 variables and 180000 constraints. The specialized interior-point method was, in average, about 10 times and two orders of magnitude faster than the CPLEX 6.5 barrier solver and the other two codes, respectively.
منابع مشابه
Interior Point Methods for Combinatorial Optimization
Research on using interior point algorithms to solve combinatorial optimization and integer programming problems is surveyed. This paper discusses branch and cut methods for integer programming problems, a potential reduction method based on transforming an integer programming problem to an equivalent nonconvex quadratic programming problem, interior point methods for solving network flow probl...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملImproving an interior-point algorithm for multicommodity flows by quadratic regularizations
One of the best approaches for some classes of multicommodity flow problems is a specialized interior-point method that solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient. Its efficiency depends on the spectral radius—in [0,1)—of a certain matrix in the definition of the preconditioner. In a recent work the authors improved this algorit...
متن کاملSolving Difficult Multicommodity Problems with a Specialized Interior-Point Algorithm
Due to recent advances in the development of linear programming solvers, some of the formerly considered difficult multicommodity problems can today be solved in few minutes, even faster than with specialized methods. However, for other kind of multicommodity instances, general linear solvers can still be quite inefficient. In this paper we will give an overview of the current state-of-the-art ...
متن کاملAn interior-point approach for primal block-angular problems
Multicommodity flows belong to the class of primal block-angular problems. An efficient interior-point method has already been developed for linear and quadratic network optimization problems. It solved normal equations, using sparse Cholesky factorizations for diagonal blocks, and a preconditioned conjugate gradient for linking constraints. In this work we extend this procedure, showing that t...
متن کامل